Banana dashboard:
Runtime logs:
2022-11-27T04:18:57.000Z total 36208
-rw-r--r-- 1 root root 7951765 Nov 27 04:19 image0.png
-rw-r--r-- 1 root root 7772122 Nov 27 04:19 image1.png
-rw-r--r-- 1 root root 7688237 Nov 27 04:19 image2.png
-rw-r--r-- 1 root root 9121967 Nov 27 04:19 image3.png
-rw-r--r-- 1 root root 4526831 Nov 27 04:19 image4.png
2022-11-27 04:19:20.353072 {'type': 'training', 'status': 'start', 'container_id': '8d46f1de86e18b2a5c0bbe1d3aaef85aff9fa4f05a59aa98c8ac5a0986e8d9ed', 'time': 1669522760353, 't': 0, 'tsl': 9896, 'payload': {}, 'init': True}
Steps: 100%|██████████| 1/1 [00:12<00:00, 12.18s/it, loss=0.0057, lr=5e-6]
self.endpoint_url s3:///selfieai-photos/
model.tar.zst
model.tar.zst
-rw-r--r-- 1 root root 4561822747 Nov 27 04:19 model.tar.zst
[2022-11-27 04:19:53 +0000] [24] [ERROR] Exception occurred while handling uri: 'http://0.0.0.0:8000/'
Traceback (most recent call last):
File "handle_request", line 81, in handle_request
FutureStatic,
File "/api/server.py", line 36, in inference
output = user_src.inference(model_inputs)
File "/api/app.py", line 277, in inference
result = TrainDreamBooth(model_id, pipeline, model_inputs, call_inputs)
File "/api/train_dreambooth.py", line 140, in TrainDreamBooth
upload_result = storage.upload_file(filename, filename)
File "/api/utils/storage/S3Storage.py", line 74, in upload_file
result = self.bucket().upload_file(source, dest)
File "/api/utils/storage/S3Storage.py", line 66, in bucket
self._bucket = self.s3().Bucket(self.bucket_name)
File "/api/utils/storage/S3Storage.py", line 55, in s3
self._s3 = boto3.resource(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/boto3/__init__.py", line 101, in resource
return _get_default_session().resource(*args, **kwargs)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/boto3/session.py", line 446, in resource
client = self.client(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/boto3/session.py", line 299, in client
return self._session.create_client(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/session.py", line 976, in create_client
client = client_creator.create_client(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/client.py", line 155, in create_client
client_args = self._get_client_args(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/client.py", line 485, in _get_client_args
return args_creator.get_client_args(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/args.py", line 129, in get_client_args
endpoint = endpoint_creator.create_endpoint(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint.py", line 402, in create_endpoint
raise ValueError("Invalid endpoint: %s" % endpoint_url)
ValueError: Invalid endpoint: s3:///selfieai-photos/
[2022-11-27 04:19:53 +0000] - (sanic.access)[INFO][127.0.0.1:58144]: POST http://0.0.0.0:8000/ 500 139
2022-11-27T04:59:33.000Z /opt/conda/envs/xformers/lib/python3.10/site-packages/torch/utils/tensorboard/__init__.py:4: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
if not hasattr(tensorboard, "__version__") or LooseVersion(
Steps: 100%|██████████| 1/1 [00:15<00:00, 15.87s/it, loss=0.269, lr=5e-6]
self.endpoint_url s3:///selfieai-photos/
model.tar.zst
model.tar.zst
2022-11-27T05:01:43.000Z /api/diffusers/src/diffusers/utils/deprecation_utils.py:35: DeprecationWarning: It is deprecated to pass a pretrained model name or path to `from_config`.If you were trying to load a model, please use <class 'diffusers.models.unet_2d_condition.UNet2DConditionModel'>.load_config(...) followed by <class 'diffusers.models.unet_2d_condition.UNet2DConditionModel'>.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0.
warnings.warn(warning + message, DeprecationWarning)
[2022-11-27 05:03:05 +0000] [25] [ERROR] Exception occurred while handling uri: 'http://0.0.0.0:8000/'
Traceback (most recent call last):
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/urllib3/connection.py", line 174, in _new_conn
conn = connection.create_connection(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/urllib3/util/connection.py", line 72, in create_connection
for res in socket.getaddrinfo(host, port, family, socket.SOCK_STREAM):
File "/opt/conda/envs/xformers/lib/python3.10/socket.py", line 955, in getaddrinfo
for res in _socket.getaddrinfo(host, port, family, type, proto, flags):
socket.gaierror: [Errno -2] Name or service not known
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/httpsession.py", line 455, in send
urllib_response = conn.urlopen(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/urllib3/connectionpool.py", line 787, in urlopen
retries = retries.increment(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/urllib3/util/retry.py", line 525, in increment
raise six.reraise(type(error), error, _stacktrace)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/urllib3/packages/six.py", line 770, in reraise
raise value
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/urllib3/connectionpool.py", line 703, in urlopen
httplib_response = self._make_request(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/urllib3/connectionpool.py", line 386, in _make_request
self._validate_conn(conn)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/urllib3/connectionpool.py", line 1042, in _validate_conn
conn.connect()
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/urllib3/connection.py", line 358, in connect
self.sock = conn = self._new_conn()
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/urllib3/connection.py", line 186, in _new_conn
raise NewConnectionError(
urllib3.exceptions.NewConnectionError: <botocore.awsrequest.AWSHTTPSConnection object at 0x7f2af15ac430>: Failed to establish a new connection: [Errno -2] Name or service not known
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "handle_request", line 81, in handle_request
FutureStatic,
File "/api/server.py", line 36, in inference
output = user_src.inference(model_inputs)
File "/api/app.py", line 277, in inference
result = TrainDreamBooth(model_id, pipeline, model_inputs, call_inputs)
File "/api/train_dreambooth.py", line 140, in TrainDreamBooth
upload_result = storage.upload_file(filename, filename)
File "/api/utils/storage/S3Storage.py", line 74, in upload_file
result = self.bucket().upload_file(source, dest)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/boto3/s3/inject.py", line 233, in bucket_upload_file
return self.meta.client.upload_file(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/boto3/s3/inject.py", line 143, in upload_file
return transfer.upload_file(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/boto3/s3/transfer.py", line 288, in upload_file
future.result()
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/s3transfer/futures.py", line 103, in result
return self._coordinator.result()
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/s3transfer/futures.py", line 266, in result
raise self._exception
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/s3transfer/tasks.py", line 139, in __call__
return self._execute_main(kwargs)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/s3transfer/tasks.py", line 162, in _execute_main
return_value = self._main(**kwargs)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/s3transfer/tasks.py", line 348, in _main
response = client.create_multipart_upload(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/client.py", line 530, in _api_call
return self._make_api_call(operation_name, kwargs)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/client.py", line 943, in _make_api_call
http, parsed_response = self._make_request(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/client.py", line 966, in _make_request
return self._endpoint.make_request(operation_model, request_dict)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint.py", line 119, in make_request
return self._send_request(request_dict, operation_model)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint.py", line 202, in _send_request
while self._needs_retry(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint.py", line 354, in _needs_retry
responses = self._event_emitter.emit(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/hooks.py", line 412, in emit
return self._emitter.emit(aliased_event_name, **kwargs)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/hooks.py", line 256, in emit
return self._emit(event_name, kwargs)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/hooks.py", line 239, in _emit
response = handler(**kwargs)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/retryhandler.py", line 207, in __call__
if self._checker(**checker_kwargs):
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/retryhandler.py", line 284, in __call__
should_retry = self._should_retry(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/retryhandler.py", line 320, in _should_retry
return self._checker(attempt_number, response, caught_exception)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/retryhandler.py", line 363, in __call__
checker_response = checker(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/retryhandler.py", line 247, in __call__
return self._check_caught_exception(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/retryhandler.py", line 416, in _check_caught_exception
raise caught_exception
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint.py", line 281, in _do_get_response
http_response = self._send(request)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint.py", line 377, in _send
return self.http_session.send(request)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/httpsession.py", line 484, in send
raise EndpointConnectionError(endpoint_url=request.url, error=e)
botocore.exceptions.EndpointConnectionError: Could not connect to the endpoint URL: "https://selfieai-photos/model.tar.zst/text-inversion-model.tar.zstd?uploads"
[2022-11-27 05:03:05 +0000] - (sanic.access)[INFO][127.0.0.1:39978]: POST http://0.0.0.0:8000/ 500 139
2022-11-27T12:44:34.000Z /opt/conda/envs/xformers/lib/python3.10/site-packages/torch/utils/tensorboard/__init__.py:4: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
if not hasattr(tensorboard, "__version__") or LooseVersion(
/opt/conda/envs/xformers/lib/python3.10/site-packages/transformers/image_utils.py:239: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
def resize(self, image, size, resample=PIL.Image.BILINEAR, default_to_square=True, max_size=None):
/opt/conda/envs/xformers/lib/python3.10/site-packages/transformers/image_utils.py:396: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
def rotate(self, image, angle, resample=PIL.Image.NEAREST, expand=0, center=None, translate=None, fillcolor=None):
/opt/conda/envs/xformers/lib/python3.10/site-packages/transformers/models/clip/feature_extraction_clip.py:67: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
resample=Image.BICUBIC,
environ({'CONDA_SHLVL': '2', 'LD_LIBRARY_PATH': '/usr/local/nvidia/lib:/usr/local/nvidia/lib64', 'REQUESTS_CA_BUNDLE': '', 'CONDA_EXE': '/opt/conda/bin/conda', '_': '/opt/conda/envs/xformers/bin/python3', 'MODEL_URL': '', 'HOSTNAME': 'selfieaidreamboothapi00484d77580e70a458dae520b2d06a10a46-f55x8k', 'PRECISION': '', 'HF_AUTH_TOKEN': 'XXXXXXX', 'AWS_SECRET_ACCESS_KEY': 'XXXXXXX', 'PIPELINE': 'ALL', 'ALIYUN_COM_GPU_MEM_CONTAINER': '16', 'USE_DREAMBOOTH': '1', 'CONDA_PREFIX': '/opt/conda/envs/xformers', 'ALIYUN_COM_GPU_MEM_POD': '16', 'AWS_S3_ENDPOINT_URL': 's3://selfieai-photos/uploads/', 'NVIDIA_VISIBLE_DEVICES': 'GPU-d0cbe3aa-ff8f-fb3a-e5ad-dabefddf9002', 'AWS_DEFAULT_REGION': 'us-east-1', '_CE_M': '', 'KUBERNETES_PORT_443_TCP_PROTO': 'tcp', 'KUBERNETES_PORT_443_TCP_ADDR': '10.96.0.1', 'CONDA_PREFIX_1': '/opt/conda', 'ALIYUN_COM_GPU_MEM_DEV': '40', 'KUBERNETES_PORT': 'tcp://10.96.0.1:443', 'PWD': '/api', 'HOME': '/root', 'CONDA_PYTHON_EXE': '/opt/conda/bin/python', 'LC_CTYPE': 'C.UTF-8', 'CHECKPOINT_CONFIG_URL': '', 'PYTORCH_VERSION': 'v1.12.1-rc5', '_CONVERT_SPECIAL': '', 'https_proxy': '', 'KUBERNETES_SERVICE_PORT_HTTPS': '443', 'DEBIAN_FRONTEND': 'noninteractive', 'KUBERNETES_PORT_443_TCP_PORT': '443', 'http_proxy': '', '_CE_CONDA': '', 'MODEL_ID': 'runwayml/stable-diffusion-v1-5', 'KUBERNETES_PORT_443_TCP': 'tcp://10.96.0.1:443', 'CONDA_PROMPT_MODIFIER': '(xformers) ', 'ALIYUN_COM_GPU_MEM_IDX': '6', 'NVIDIA_DRIVER_CAPABILITIES': 'compute,utility', 'CONDA_ROOT': '/opt/conda', 'AWS_ACCESS_KEY_ID': 'XXXXXXXXX', 'SHLVL': '2', 'KUBERNETES_SERVICE_PORT': '443', 'CHECKPOINT_URL': '', 'PATH': '/opt/conda/envs/xformers/bin:/opt/conda/condabin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin', 'CONDA_DEFAULT_ENV': 'xformers', 'KUBERNETES_SERVICE_HOST': '10.96.0.1'})
2022-11-27 12:44:41.761231 {'type': 'init', 'status': 'start', 'container_id': 'ba87e86e46d0b8d845d87b44b59576b7e73bc3d203fbf42309e7fc45ac940c83', 'time': 1669553081761, 't': 0, 'tsl': 407, 'payload': {'device': 'NVIDIA A100-SXM4-40GB', 'hostname': 'selfieaidreamboothapi00484d77580e70a458dae520b2d06a10a46-f55x8k', 'model_id': 'runwayml/stable-diffusion-v1-5', 'diffusers': '0.8.0'}, 'init': True}
Loading model: runwayml/stable-diffusion-v1-5
Initializing LMSDiscreteScheduler for runwayml/stable-diffusion-v1-5...
/api/diffusers/src/diffusers/utils/deprecation_utils.py:35: DeprecationWarning: It is deprecated to pass a pretrained model name or path to `from_config`.If you were trying to load a scheduler, please use <class 'diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler'>.from_pretrained(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0.
warnings.warn(warning + message, DeprecationWarning)
Initialized LMSDiscreteScheduler for runwayml/stable-diffusion-v1-5 in 29ms
<frozen importlib._bootstrap>:283: DeprecationWarning: the load_module() method is deprecated and slated for removal in Python 3.12; use exec_module() instead
/api/diffusers/src/diffusers/utils/deprecation_utils.py:35: DeprecationWarning: It is deprecated to pass a pretrained model name or path to `from_config`.
warnings.warn(warning + message, DeprecationWarning)
/api/diffusers/src/diffusers/utils/deprecation_utils.py:35: DeprecationWarning: It is deprecated to pass a pretrained model name or path to `from_config`.If you were trying to load a model, please use <class 'diffusers.models.unet_2d_condition.UNet2DConditionModel'>.load_config(...) followed by <class 'diffusers.models.unet_2d_condition.UNet2DConditionModel'>.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0.
warnings.warn(warning + message, DeprecationWarning)
{
"modelInputs": {
"instance_prompt": "a photo of sks dog",
"instance_images": [
"/9j/4A...",
"/9j/4A...",
"/9j/4A...",
"/9j/4A...",
"/9j/4A..."
],
"max_train_steps": 1,
"num_class": "images=1"
},
"callInputs": {
"MODEL_ID": "runwayml/stable-diffusion-v1-5",
"PIPELINE": "StableDiffusionPipeline",
"SCHEDULER": "DDPMScheduler",
"train": "dreambooth",
"dest_url": "s3:///selfieai-photos/model.tar.zst"
}
}
Initializing DDPMScheduler for runwayml/stable-diffusion-v1-5...
/api/diffusers/src/diffusers/utils/deprecation_utils.py:35: DeprecationWarning: It is deprecated to pass a pretrained model name or path to `from_config`.If you were trying to load a scheduler, please use <class 'diffusers.schedulers.scheduling_ddpm.DDPMScheduler'>.from_pretrained(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0.
warnings.warn(warning + message, DeprecationWarning)
Initialized DDPMScheduler for runwayml/stable-diffusion-v1-5 in 1ms
Decoded image "instance_image": JPEG 2732x2736
Decoded image "instance_image": JPEG 2476x2612
Decoded image "instance_image": JPEG 2469x2558
Decoded image "instance_image": JPEG 2796x2656
Decoded image "instance_image": JPEG 1815x1967
2022-11-27 12:44:51.769836 {'type': 'inference', 'status': 'start', 'container_id': 'ba87e86e46d0b8d845d87b44b59576b7e73bc3d203fbf42309e7fc45ac940c83', 'time': 1669553091770, 't': 0, 'tsl': 1614, 'payload': {'startRequestId': None}, 'init': True}
pipeline.enable_xformers_memory_efficient_attention()
{'instance_prompt': 'a photo of sks dog', 'max_train_steps': 1, 'num_class': 'images=1'}
Namespace(pretrained_model_name_or_path='runwayml/stable-diffusion-v1-5', revision=None, tokenizer_name=None, instance_data_dir='instance_data_dir', class_data_dir='class_data_dir', class_prompt=None, with_prior_preservation=False, prior_loss_weight=1.0, num_class_images=100, output_dir='text-inversion-model', seed=None, resolution=512, center_crop=None, train_text_encoder=None, train_batch_size=1, sample_batch_size=1, num_train_epochs=1, max_train_steps=1, gradient_accumulation_steps=1, gradient_checkpointing=True, learning_rate=5e-06, scale_lr=False, lr_scheduler='constant', lr_warmup_steps=0, use_8bit_adam=True, adam_beta1=0.9, adam_beta2=0.999, adam_weight_decay=1e-06, adam_epsilon=1e-08, max_grad_norm=1.0, push_to_hub=None, hub_token='XXXXXXX', hub_model_id=None, logging_dir='logs', mixed_precision=None, local_rank=-1, instance_prompt='a photo of sks dog', num_class='images=1')
total 36208
-rw-r--r-- 1 root root 7951765 Nov 27 12:44 image0.png
-rw-r--r-- 1 root root 7772122 Nov 27 12:44 image1.png
-rw-r--r-- 1 root root 7688237 Nov 27 12:44 image2.png
-rw-r--r-- 1 root root 9121967 Nov 27 12:45 image3.png
-rw-r--r-- 1 root root 4526831 Nov 27 12:45 image4.png
2022-11-27 12:45:03.071653 {'type': 'training', 'status': 'start', 'container_id': 'ba87e86e46d0b8d845d87b44b59576b7e73bc3d203fbf42309e7fc45ac940c83', 'time': 1669553103072, 't': 0, 'tsl': 11302, 'payload': {}, 'init': True}
2022-11-27 12:45:09.186304 {'type': 'training', 'status': 'done', 'container_id': 'ba87e86e46d0b8d845d87b44b59576b7e73bc3d203fbf42309e7fc45ac940c83', 'time': 1669553109186, 't': 6114, 'tsl': 6114, 'payload': {}}
0%| | 0/1 [00:00<?, ?it/s]
Steps: 0%| | 0/1 [00:00<?, ?it/s]
Steps: 100%|██████████| 1/1 [00:05<00:00, 5.90s/it]
Steps: 100%|██████████| 1/1 [00:05<00:00, 5.90s/it, loss=0.0224, lr=5e-6]/api/diffusers/src/diffusers/utils/deprecation_utils.py:35: DeprecationWarning: It is deprecated to pass a pretrained model name or path to `from_config`.
warnings.warn(warning + message, DeprecationWarning)
-rw-r--r-- 1 root root 4561838429 Nov 27 12:45 model.tar.zst
[2022-11-27 12:45:42 +0000] [25] [ERROR] Exception occurred while handling uri: 'http://0.0.0.0:8000/'
Traceback (most recent call last):
File "handle_request", line 81, in handle_request
FutureStatic,
File "/api/server.py", line 36, in inference
output = user_src.inference(model_inputs)
File "/api/app.py", line 277, in inference
result = TrainDreamBooth(model_id, pipeline, model_inputs, call_inputs)
File "/api/train_dreambooth.py", line 140, in TrainDreamBooth
upload_result = storage.upload_file(filename, filename)
File "/api/utils/storage/S3Storage.py", line 74, in upload_file
result = self.bucket().upload_file(source, dest)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/boto3/s3/inject.py", line 233, in bucket_upload_file
return self.meta.client.upload_file(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/boto3/s3/inject.py", line 143, in upload_file
return transfer.upload_file(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/boto3/s3/transfer.py", line 288, in upload_file
future.result()
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/s3transfer/futures.py", line 103, in result
return self._coordinator.result()
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/s3transfer/futures.py", line 266, in result
raise self._exception
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/s3transfer/tasks.py", line 139, in __call__
return self._execute_main(kwargs)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/s3transfer/tasks.py", line 162, in _execute_main
return_value = self._main(**kwargs)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/s3transfer/tasks.py", line 348, in _main
response = client.create_multipart_upload(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/client.py", line 530, in _api_call
return self._make_api_call(operation_name, kwargs)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/client.py", line 916, in _make_api_call
endpoint_url, additional_headers = self._resolve_endpoint_ruleset(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/client.py", line 1059, in _resolve_endpoint_ruleset
endpoint_info = self._ruleset_resolver.construct_endpoint(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/regions.py", line 502, in construct_endpoint
provider_result = self._provider.resolve_endpoint(
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint_provider.py", line 715, in resolve_endpoint
endpoint = self.ruleset.evaluate(input_parameters)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint_provider.py", line 695, in evaluate
evaluation = rule.evaluate(input_parameters.copy(), self.rule_lib)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint_provider.py", line 546, in evaluate
rule_result = rule.evaluate(scope_vars.copy(), rule_lib)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint_provider.py", line 546, in evaluate
rule_result = rule.evaluate(scope_vars.copy(), rule_lib)
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint_provider.py", line 546, in evaluate
rule_result = rule.evaluate(scope_vars.copy(), rule_lib)
[Previous line repeated 1 more time]
File "/opt/conda/envs/xformers/lib/python3.10/site-packages/botocore/endpoint_provider.py", line 522, in evaluate
raise EndpointResolutionError(msg=error)
botocore.exceptions.EndpointResolutionError: Custom endpoint `s3://selfieai-photos/uploads/` was not a valid URI
[2022-11-27 12:45:42 +0000] - (sanic.access)[INFO][127.0.0.1:44328]: POST http://0.0.0.0:8000/ 500 139
2022-11-27T12:46:43.000Z /opt/conda/envs/xformers/lib/python3.10/site-packages/transformers/image_utils.py:239: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
def resize(self, image, size, resample=PIL.Image.BILINEAR, default_to_square=True, max_size=None):
/opt/conda/envs/xformers/lib/python3.10/site-packages/transformers/image_utils.py:396: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
def rotate(self, image, angle, resample=PIL.Image.NEAREST, expand=0, center=None, translate=None, fillcolor=None):
/opt/conda/envs/xformers/lib/python3.10/site-packages/transformers/models/clip/feature_extraction_clip.py:67: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
resample=Image.BICUBIC,
environ({'CONDA_SHLVL': '2', 'LD_LIBRARY_PATH': '/usr/local/nvidia/lib:/usr/local/nvidia/lib64', 'REQUESTS_CA_BUNDLE': '', 'CONDA_EXE': '/opt/conda/bin/conda', '_': '/opt/conda/envs/xformers/bin/python3', 'MODEL_URL': '', 'HOSTNAME': 'selfieaidreamboothapi00484d77580e70a458dae520b2d06a10a46-fmg2gq', 'PRECISION': '', 'HF_AUTH_TOKEN': 'XXXXXXXX', 'AWS_SECRET_ACCESS_KEY': 'XXXXXXXXX', 'PIPELINE': 'ALL', 'ALIYUN_COM_GPU_MEM_CONTAINER': '16', 'USE_DREAMBOOTH': '1', 'CONDA_PREFIX': '/opt/conda/envs/xformers', 'ALIYUN_COM_GPU_MEM_POD': '16', 'AWS_S3_ENDPOINT_URL': 's3://selfieai-photos/uploads/', 'NVIDIA_VISIBLE_DEVICES': 'GPU-a097ad1c-88f3-4877-2e51-1f8d371fb2b4', 'AWS_DEFAULT_REGION': 'us-east-1', '_CE_M': '', 'KUBERNETES_PORT_443_TCP_PROTO': 'tcp', 'KUBERNETES_PORT_443_TCP_ADDR': '10.96.0.1', 'CONDA_PREFIX_1': '/opt/conda', 'ALIYUN_COM_GPU_MEM_DEV': '40', 'KUBERNETES_PORT': 'tcp://10.96.0.1:443', 'PWD': '/api', 'HOME': '/root', 'CONDA_PYTHON_EXE': '/opt/conda/bin/python', 'LC_CTYPE': 'C.UTF-8', 'CHECKPOINT_CONFIG_URL': '', 'PYTORCH_VERSION': 'v1.12.1-rc5', '_CONVERT_SPECIAL': '', 'https_proxy': '', 'KUBERNETES_SERVICE_PORT_HTTPS': '443', 'DEBIAN_FRONTEND': 'noninteractive', 'KUBERNETES_PORT_443_TCP_PORT': '443', 'http_proxy': '', '_CE_CONDA': '', 'MODEL_ID': 'runwayml/stable-diffusion-v1-5', 'KUBERNETES_PORT_443_TCP': 'tcp://10.96.0.1:443', 'CONDA_PROMPT_MODIFIER': '(xformers) ', 'ALIYUN_COM_GPU_MEM_IDX': '5', 'NVIDIA_DRIVER_CAPABILITIES': 'compute,utility', 'CONDA_ROOT': '/opt/conda', 'AWS_ACCESS_KEY_ID': 'XXXXXXXX', 'SHLVL': '2', 'KUBERNETES_SERVICE_PORT': '443', 'CHECKPOINT_URL': '', 'PATH': '/opt/conda/envs/xformers/bin:/opt/conda/condabin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin', 'CONDA_DEFAULT_ENV': 'xformers', 'KUBERNETES_SERVICE_HOST': '10.96.0.1'})
2022-11-27 12:48:57.721665 {'type': 'init', 'status': 'start', 'container_id': 'f0d6409d28af0244aed2e3293f5a241dbe79aaf7f049e1496e86743010c78bb1', 'time': 1669553337722, 't': 0, 'tsl': 266, 'payload': {'device': 'NVIDIA A100-SXM4-40GB', 'hostname': 'selfieaidreamboothapi00484d77580e70a458dae520b2d06a10a46-fmg2gq', 'model_id': 'runwayml/stable-diffusion-v1-5', 'diffusers': '0.8.0'}, 'init': True}
Loading model: runwayml/stable-diffusion-v1-5
Initializing LMSDiscreteScheduler for runwayml/stable-diffusion-v1-5...
/api/diffusers/src/diffusers/utils/deprecation_utils.py:35: DeprecationWarning: It is deprecated to pass a pretrained model name or path to `from_config`.If you were trying to load a scheduler, please use <class 'diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler'>.from_pretrained(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0.
warnings.warn(warning + message, DeprecationWarning)
Initialized LMSDiscreteScheduler for runwayml/stable-diffusion-v1-5 in 3ms
<frozen importlib._bootstrap>:283: DeprecationWarning: the load_module() method is deprecated and slated for removal in Python 3.12; use exec_module() instead
/api/diffusers/src/diffusers/utils/deprecation_utils.py:35: DeprecationWarning: It is deprecated to pass a pretrained model name or path to `from_config`.If you were trying to load a model, please use <class 'diffusers.models.unet_2d_condition.UNet2DConditionModel'>.load_config(...) followed by <class 'diffusers.models.unet_2d_condition.UNet2DConditionModel'>.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0.
warnings.warn(warning + message, DeprecationWarning)
/api/diffusers/src/diffusers/utils/deprecation_utils.py:35: DeprecationWarning: It is deprecated to pass a pretrained model name or path to `from_config`.
warnings.warn(warning + message, DeprecationWarning)
{
"modelInputs": {
"instance_prompt": "a photo of sks dog",
"instance_images": [
"/9j/4A...",
"/9j/4A...",
"/9j/4A...",
"/9j/4A...",
"/9j/4A..."
],
"max_train_steps": 1,
"num_class": "images=1"
},
"callInputs": {
"MODEL_ID": "runwayml/stable-diffusion-v1-5",
"PIPELINE": "StableDiffusionPipeline",
"SCHEDULER": "DDPMScheduler",
"train": "dreambooth",
"dest_url": "s3:///selfieai-photos/model.tar.zst"
}
}
Initializing DDPMScheduler for runwayml/stable-diffusion-v1-5...
/api/diffusers/src/diffusers/utils/deprecation_utils.py:35: DeprecationWarning: It is deprecated to pass a pretrained model name or path to `from_config`.If you were trying to load a scheduler, please use <class 'diffusers.schedulers.scheduling_ddpm.DDPMScheduler'>.from_pretrained(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0.
warnings.warn(warning + message, DeprecationWarning)
Initialized DDPMScheduler for runwayml/stable-diffusion-v1-5 in 2ms
Decoded image "instance_image": JPEG 2732x2736
Decoded image "instance_image": JPEG 2476x2612
Decoded image "instance_image": JPEG 2469x2558
Decoded image "instance_image": JPEG 2796x2656
Decoded image "instance_image": JPEG 1815x1967
2022-11-27 12:49:05.880331 {'type': 'inference', 'status': 'start', 'container_id': 'f0d6409d28af0244aed2e3293f5a241dbe79aaf7f049e1496e86743010c78bb1', 'time': 1669553345880, 't': 0, 'tsl': 1573, 'payload': {'startRequestId': None}, 'init': True}
pipeline.enable_xformers_memory_efficient_attention()
{'instance_prompt': 'a photo of sks dog', 'max_train_steps': 1, 'num_class': 'images=1'}
Namespace(pretrained_model_name_or_path='runwayml/stable-diffusion-v1-5', revision=None, tokenizer_name=None, instance_data_dir='instance_data_dir', class_data_dir='class_data_dir', class_prompt=None, with_prior_preservation=False, prior_loss_weight=1.0, num_class_images=100, output_dir='text-inversion-model', seed=None, resolution=512, center_crop=None, train_text_encoder=None, train_batch_size=1, sample_batch_size=1, num_train_epochs=1, max_train_steps=1, gradient_accumulation_steps=1, gradient_checkpointing=True, learning_rate=5e-06, scale_lr=False, lr_scheduler='constant', lr_warmup_steps=0, use_8bit_adam=True, adam_beta1=0.9, adam_beta2=0.999, adam_weight_decay=1e-06, adam_epsilon=1e-08, max_grad_norm=1.0, push_to_hub=None, hub_token='XXXXXXX', hub_model_id=None, logging_dir='logs', mixed_precision=None, local_rank=-1, instance_prompt='a photo of sks dog', num_class='images=1')