code": “APP_INFERENCE_ERROR”,
“name”: “OutOfMemoryError”,
“message”: “CUDA out of memory. Tried to allocate 50.91 GiB (GPU 0; 23.69 GiB total capacity; 16.33 GiB already allocated; 332.81 MiB free; 22.96 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF”,
“stack”: “Traceback (most recent call last):\n File "/api/server.py", line 53, in inference\n output = await user_src.inference(all_inputs, streaming_response)\n File "/api/app.py", line 232, in inference\n return await extra(\n File "/api/extras/upsample/upsample.py", line 207, in upsample\n output, _rgb = upsampler.enhance(img, outscale=4) # TODO outscale param\n File "/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context\n return func(*args, **kwargs)\n File "/api/Real-ESRGAN/realesrgan/utils.py", line 223, in enhance\n self.process()\n File "/api/Real-ESRGAN/realesrgan/utils.py", line 115, in process\n self.output = self.model(self.img)\n File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl\n return forward_call(*args, **kwargs)\n File "/opt/conda/lib/python3.10/site-packages/basicsr/archs/rrdbnet_arch.py", line 117, in forward\n feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode=‘nearest’)))\n File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl\n return forward_call(*args, **kwargs)\n File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/conv.py", line 463, in forward\n return self._conv_forward(input, self.weight, self.bias)\n File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/conv.py", line 459, in _conv_forward\n return F.conv2d(input, weight, bias, self.stride,\ntorch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.91 GiB (GPU 0; 23.69 GiB total capacity; 16.33 GiB already allocated; 332.81 MiB free; 22.96 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF\n”
}
Traceback (most recent call last):
File “/api/server.py”, line 53, in inference
output = await user_src.inference(all_inputs, streaming_response)
File “/api/app.py”, line 232, in inference
return await extra(
File “/api/extras/upsample/upsample.py”, line 207, in upsample
output, _rgb = upsampler.enhance(img, outscale=4) # TODO outscale param
File “/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py”, line 115, in decorate_context
return func(*args, **kwargs)
File “/api/Real-ESRGAN/realesrgan/utils.py”, line 223, in enhance
self.process()
File “/api/Real-ESRGAN/realesrgan/utils.py”, line 115, in process
self.output = self.model(self.img)
File “/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py”, line 1501, in _call_impl
return forward_call(*args, **kwargs)
File “/opt/conda/lib/python3.10/site-packages/basicsr/archs/rrdbnet_arch.py”, line 117, in forward
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode=‘nearest’)))
File “/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py”, line 1501, in _call_impl
return forward_call(*args, **kwargs)
File “/opt/conda/lib/python3.10/site-packages/torch/nn/modules/conv.py”, line 463, in forward
return self._conv_forward(input, self.weight, self.bias)
File “/opt/conda/lib/python3.10/site-packages/torch/nn/modules/conv.py”, line 459, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.91 GiB (GPU 0; 23.69 GiB total capacity; 16.33 GiB already allocated; 332.81 MiB free; 22.96 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF